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Supplementary Methods

1. 3d grid for molecule generation

We use a grid of candidate positions G ⊂ R3, with a spacing of 0.05 Å. The extent of the grid is limited by a
minimum distance dmin and a maximum distance dmax:

G = {r ∈ R3|r = (0.05 · x, 0.05 · y, 0.05 · z) ∧ x, y, z ∈ Z ∧ dmin ≤ ||r||2 ≤ dmax}.

The limits should be chosen according to the minimum and maximum distances between atoms in the training set
that are considered to be neighbors when building atom placement sequences. For our experiments with QM9, we
choose dmin = 0.9 Å and dmax = 1.7 Å.

Furthermore, as in previous work with G-SchNet [1], we utilize a temperature parameter T to control the randomness
when sampling from candidate positions:
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Increasing T will increase randomness by smoothing the grid distribution. For sampling, we stick with T=0.1 in this
work, which was found to result in accurate yet diverse sets of generated molecules [1].

The very first atom is placed solely based on the predicted distance to the origin token, i.e. the center of mass
of the structure about to be generated. Naturally, this distance is not restricted by the same limits as neighboring
atoms and thus, for this particular step, we employ a special grid G1 ⊂ R3 that covers larger distances:

G1 = {r ∈ R3|r = (0.05 · x, 0, 0) ∧ x ∈ N ∧ ||r||2 < 15}.

The maximum distance covered by the grid has been chosen to match with the maximum distance covered in the
discretized distance distributions predicted by the model. Due to symmetry, the grid only needs to extend into one
direction. Furthermore, the distribution is not smoothed during generation, i.e. we always set T=1.0 when sampling
the first atom.
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2. Calculation of relative atomic energy

We define a relative atomic energy that describes whether the energy per atom of a 3d conformation is comparatively
high or low with respect to other structures in the data set that share the same atomic composition:

Erel(R≤n,Z≤n) = E(R≤n,Z≤n)− ÊZ(Z≤n). (5)

Here, E(R≤n,Z≤n) is the internal energy per atom at zero Kelvin of a molecular structure and ÊZ(Z≤n) is the
expected internal energy per atom of molecules with the same composition in the training data set. A similarly
normalized energy has been defined by Zubatyuk et al. [2] for their neural network potential AIMNet. Analogous to

their procedure, we predict ÊZ(Z≤n) from the atomic composition with a linear regression model. The model maps
from atomic concentration, i.e. the atomic composition divided by the total number of atoms in the system, to the
internal energy per atom at zero Kelvin. In this way, we can compute the relative atomic energy even for structures
with compositions that are not included in the training data and treat molecules of different size and composition in
a comparable and normalized manner. This allows our model to learn a relation between 3d conformations and their
energy that can be transferred across compositions, as can be seen in our experiments where we sample low-energy
C7O2H10 isomers with a model that was trained solely on other compositions (see Figure 4 in the paper).

The internal energy of training structures is provided in QM9 as property ”U0”. For unrelaxed, generated structures
we predict the internal energy with a SchNet model trained on QM9 as explained in the Methods (section IV G). For
relaxed, generated molecules we use the internal energy calculated with the ORCA quantum chemistry package [3]
(Supplementary Methods S4). Although we relax structures at the same level of theory as the training data , the
internal energies obtained with ORCA have a systematic offset compared to the calculations used in QM9. Thus, we
estimate this offset and add it to the calculated internal energy. For the relaxed low-energy C7O2H10 isomers (results
in Fig. 4b-d), we re-compute the internal energy of all C7O2H10 isomers in QM9 with ORCA and take the average
difference between the reported internal energies and the re-computed values to estimate the offset (∼ −0.0064 eV
per atom). For the relaxed low-energy molecules with small HOMO-LUMO gap (results in Fig. 5) we re-compute
the internal energy of 1000 randomly sampled structures from QM9 with ORCA and fit a linear regression model
to predict the difference between reported internal energies and re-computed values from the atomic composition.
This allows to estimate the offset between internal energies from ORCA and the training data for relaxed, generated
molecules of arbitrary composition.

3. Calculation of fingerprints

We obtain 1024 bits long binary fingerprints that capture the presence of linear fragments with up to seven atoms
with Open Babel [4]. We use version 2.4.1 of Open Babel, where the employed fingerprint is called ”FP2” and
corresponds to the default choice. Fingerprints are calculated after the SMILES representation of 3d structures are
obtained as described in the Methods (section IV F).

4. Relaxation of generated structures with density functional theory

All electronic structure computations were carried out with the ORCA quantum chemistry package [3]. SCF
convergence was set to tight and integration grid levels of 4 and 5 were employed during SCF iterations and the final
computation of properties, respectively.

Structures were first pre-optimized at the PBE/def2-SVP[5, 6] level of theory and then relaxed at the final B3LYP/6-
31G(2df,2p) level [7–10]. We used the same B3LYP parametrization scheme as employed in the Gaussian electronic
structure packages. To further accelerate the relaxation procedure, the resolution of identity (RI)[11, 12] and chain
of spheres (COS)[13] approximations were used.

The zero point vibrational energies required for the computation of the internal energies were obtained by normal
mode analysis performed on the fully relaxed structures using the B3LYP/6-31G(2df,2p) level of theory.
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SUPPLEMENTARY FIGURE 1. Generated novel C7O2H10 isomers vs. most similar isomers in QM9. Pairs of gen-
erated, novel, low-energy C7O2H10 isomers (left) and the corresponding most similar C7O2H10 isomer in QM9 (right) according
the Tanimoto similarity of path-based fingerprints (noted below each pair). In the first row, we show pairs corresponding to
the novel structures depicted in the first row of Fig. 4d. The remaining structures are uniformly randomly selected from all
novel isomers with relative atomic energy ≤ -0.05 eV generated by cG-SchNet (target energy -0.1 eV).

SUPPLEMENTARY FIGURE 2. Generated novel C7O2H10 isomers containing carboxylic acid. The twelve generated
C7O2H10 isomers with relative atomic energy ≤ -0.05 eV containing a carboxylic acid group. The molecules were obtained by
cG-SchNet with target relative atomic energy -0.1 eV. Relative atomic energies are denoted below each isomer.



4

SUPPLEMENTARY FIGURE 3. Different conformations of the five most generated C7O2H10 isomers. For the five
most often generated C7O2H10 isomers (that share the same isomeric SMILES string) from cG-SchNet with target relative
atomic energy -0.1 eV we randomly sample 50 of the generated examples. We relax them and report the resulting unique
conformations along with their respective deviation from the mean energy per atom of all 50 examples. For three of the five
isomers, all examples converge to the same conformation. However, we see that cG-SchNet is capable of sampling multiple
conformations whenever there are degrees of freedom, e.g. in isomer number one and isomer number four. Our analysis suggests
the path for a possible future adaptation and application of cG-SchNet that is particularly tailored to generative models for 3d
molecules, i.e. the targeted generation of conformations for a given (possibly isomeric) graph. To this end, a proper embedding
of the molecular graph and several target properties would need to be provided as conditions.

SUPPLEMENTARY FIGURE 4. Comparison of generated novel C7O2H10 isomers before and after relaxation. We
show novel, low-energy C7O2H10 structures as generated by our model and the corresponding closest equilibrium conformation
found by relaxation with DFT (orange structures). The root-mean-square deviation between atom positions before and after
relaxation is noted below each molecule (in Å). We show the same structures as in Fig. 1.
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SUPPLEMENTARY FIGURE 5. HOMO-LUMO gap and relative atomic energy of molecules generated by cG-
SchNet and in the training data. We show the HOMO-LUMO gap and relative atomic energy of molecules close to the
conditioning target (black cross) for both the training data set (orange) and the set of unseen and valid structures generated by
cG-SchNet (blue). Moreover, three training structures (orange, dotted lines) and five novel, generated molecules (blue, dotted
lines) from the borders of the distributions are shown for reference. Here we see how cG-SchNet generalizes to larger structures
(i.e. with more than 9 heavy atoms) when sampling molecules with particularly low HOMO-LUMO gap and relative atomic
energy.

SUPPLEMENTARY TABLE 1. Choice of neural network hyper-parameters. In this work, we trained five cG-SchNet
models using different target properties. Each model uses a SchNet network with 128 features, 9 interaction blocks, a cutoff
of 10 Å, and 25 centers for the radial basis expansion of distances. For the remaining building blocks, we report the number
of neurons per layer in the MLPs and the additional hyper-parameters. Furthermore, we mark which block was used in which
model, where model 1 targets isotropic polarizability (results in Fig. 1b), 2 targets molecular fingerprints (Fig. 3a), 3 targets
atomic composition and HOMO-LUMO gap (Fig. 3b), 4 targets atomic composition and relative atomic energy (Fig. 4), and
5 targets relative atomic energy and HOMO-LUMO gap (Fig. 5).

Neural network block Model Neurons per layer Additional parameters

isotropic polarizability embedding 1 64, 64, 64 λmin: 33.75 a30, λmax: 107.95 a30, ∆ω: 5.3 a30
fingerprint embedding 2 725, 426, 128 —
HOMO-LUMO gap embedding 3, 5 64, 64, 64 λmin: 2 eV, λmax: 11 eV, ∆ω: 2.25 eV
relative atomic energy embedding 4, 5 64, 64, 64 λmin: -0.2 eV, λmax: 0.2 eV, ∆ω: 0.1 eV
atom count embedding 3, 4 64, 64, 64 λmin: 0, λmax: 35, ∆ω: 8.75
composition embedding 3, 4 64, 64, 64 gcomp

Z : 16 features
properties aggregation all 128, 128, 128, 128, 128 —
type prediction all 206, 156, 106, 56, 6 —
distance predictions all 264, 273, 282, 291, 300 L: 300, ∆µ: 0.05 Å, gnext

Z : 128 features
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SUPPLEMENTARY TABLE 2. Relaxation results. Results for relaxation of the 100 generated unique unseen molecules
closest to the respective target electronic property values. We show the properties on which the respective model was condi-
tioned, the targeted property values, the validity of the relaxed molecules, the median root-mean-square deviation (RMSD)
between atom positions before and after relaxation for valid molecules, and the mean absolute error (MAE) between the prop-
erty values before and after relaxation for valid molecules (i.e. how much the calculated property values of relaxed molecules
deviate from the predicted property values of the generated molecules). For the C7O2H10 isomers sampled with relative atomic
energy target -0.1 eV and molecules sampled while targeting HOMO-LUMO gap and relative atomic energy simultaneously,
the statistics are calculated from all generated unique unseen molecules instead of the 100 closest (since we relaxed all of them
for our analyses in Fig. 4 and Fig. 5).

Conditioning Target Validity RMSD MAE

isotropic polarizability (a30)

33.75 a30 96% 0.20 Å 2.23 a30
54.00 a30 99% 0.19 Å 2.35 a30
74.25 a30 100% 0.23 Å 1.40 a30
94.50 a30 98% 0.28 Å 0.99 a30

114.75 a30 100% 0.38 Å 2.95 a30

composition &
HOMO-LUMO gap (eV )

C7N1O1H11
100% 0.32 Å 0.20 eV5.0 eV

C7N1O1H11
100% 0.15 Å 0.18 eV9.0 eV

composition &
relative atomic energy (eV )

C7O2H10
100% 0.26 Å 0.01 eV-0.1 eV

C7O2H10
100% 0.26 Å 0.01 eV0.0 eV

C7O2H10
97% 0.17 Å 0.02 eV0.1 eV

HOMO-LUMO gap (eV ) &
relative atomic energy (eV )

4.0 eV
-0.2 eV

100% 0.30 Å
0.33 eV
0.03 eV
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